Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 642: 123200, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37414373

RESUMO

A correlative, multiscale imaging methodology for visualising and quantifying the morphology of solid dosage forms by combining ptychographic X-ray computed nanotomography (PXCT) and scanning small- and wide-angle X-ray scattering (S/WAXS) is presented. The methodology presents a workflow for multiscale analysis, where structures are characterised from the nanometre to millimetre regime. Here, the method is demonstrated by characterising a hot-melt extruded, partly crystalline, solid dispersion of carbamazepine in ethyl cellulose. Characterisation of the morphology and solid-state phase of the drug in solid dosage forms is central as this affects the performance of the final formulation. The 3D morphology was visualised at a resolution of 80 nm over an extended volume through PXCT, revealing an oriented structure of crystalline drug domains aligned in the direction of extrusion. Scanning S/WAXS showed that the nanostructure is similar over the cross section of the extruded filament, with minor radial changes in domain sizes and degree of orientation. The polymorphic forms of carbamazepine were qualified with WAXS, showing a heterogeneous distribution of the metastable forms I and II. This demonstrates the methodology for multiscale structural characterization and imaging to enable a better understanding of the relationships between morphology, performance, and processing conditions of solid dosage forms.


Assuntos
Carbamazepina , Raios X , Radiografia , Preparações Farmacêuticas , Difração de Raios X , Formas de Dosagem
2.
Nat Commun ; 14(1): 854, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792892

RESUMO

Efficient lithium metal stripping and plating operation capable of maintaining electronic and ionic conductivity is crucial to develop safe lithium metal batteries. However, monitoring lithium metal microstructure evolution during cell cycling is challenging. Here, we report the development of an operando synchrotron X-ray tomographic microscopy method capable of probing in real-time the formation, growth, and dissolution of Li microstructures during the cycling of a Li||Cu cell containing a standard non-aqueous liquid electrolyte solution. The analyses of the operando X-ray tomographic microscopy measurements enable tracking the evolution of deposited Li metal as a function of time and applied current density and distinguishing the formation of electrochemically inactive Li from the active bulk of Li microstructures. Furthermore, in-depth analyses of the Li microstructures shed some light on the structural connectivity of deposited Li at different current densities as well as the formation mechanism of fast-growing fractal Li microstructures, which are ultimately responsible for cell failure.

3.
Chemphyschem ; 23(4): e202100853, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-34939728

RESUMO

Semi-liquid catholyte Lithium-Sulfur (Li-S) cells have shown to be a promising path to realize high energy density energy storage devices. In general, Li-S cells rely on the conversion of elemental sulfur to soluble polysulfide species. In the case of catholyte cells, the active material is added through polysulfide species dissolved in the electrolyte. Herein, we use operando Raman spectroscopy to track the speciation and migration of polysulfides in the catholyte to shed light on the processes taking place. Combined with ex-situ surface and electrochemical analysis we show that the migration of polysulfides is central in order to maximize the performance in terms of capacity (active material utilization) as well as interphase stability on the Li-metal anode during cycling. More specifically we show that using a catholyte where the polysulfides have the dual roles of active material and conducting species, e. g. no traditional Li-salt (such as LiTFSI) is present, results in a higher mobility and faster migration of polysulfides. We also reveal how the formation of long chain polysulfides in the catholyte is delayed during charge as a result of rapid formation and migration of shorter chain species, beneficial for reaching higher capacities. However, the depletion of ionic species during the last stage of charge, due to the conversion to and precipitation of elemental sulfur on the cathode support, results in polarization of the cell before full conversion can be achieved.


Assuntos
Lítio , Sulfetos , Eletrodos , Sulfetos/química , Enxofre
4.
Sci Adv ; 7(22)2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34049889

RESUMO

Sodium, in contrast to other metals, cannot intercalate in graphite, hindering the use of this cheap, abundant element in rechargeable batteries. Here, we report a nanometric graphite-like anode for Na+ storage, formed by stacked graphene sheets functionalized only on one side, termed Janus graphene. The asymmetric functionalization allows reversible intercalation of Na+, as monitored by operando Raman spectroelectrochemistry and visualized by imaging ellipsometry. Our Janus graphene has uniform pore size, controllable functionalization density, and few edges; it can store Na+ differently from graphite and stacked graphene. Density functional theory calculations demonstrate that Na+ preferably rests close to -NH2 group forming synergic ionic bonds to graphene, making the interaction process energetically favorable. The estimated sodium storage up to C6.9Na is comparable to graphite for standard lithium ion batteries. Given such encouraging Na+ reversible intercalation behavior, our approach provides a way to design carbon-based materials for sodium ion batteries.

5.
Adv Sci (Weinh) ; 8(5): 2003301, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33717853

RESUMO

Due to an ultrahigh theoretical specific capacity of 3860 mAh g-1, lithium (Li) is regarded as the ultimate anode for high-energy-density batteries. However, the practical application of Li metal anode is hindered by safety concerns and low Coulombic efficiency both of which are resulted fromunavoidable dendrite growth during electrodeposition. This study focuses on a critical parameter for electrodeposition, the exchange current density, which has attracted only little attention in research on Li metal batteries. A phase-field model is presented to show the effect of exchange current density on electrodeposition behavior of Li. The results show that a uniform distribution of cathodic current density, hence uniform electrodeposition, on electrode is obtained with lower exchange current density. Furthermore, it is demonstrated that lower exchange current density contributes to form a larger critical radius of nucleation in the initial electrocrystallization that results in a dense deposition of Li, which is a foundation for improved Coulombic efficiency and dendrite-free morphology. The findings not only pave the way to practical rechargeable Li metal batteries but can also be translated to the design of stable metal anodes, e.g., for sodium (Na), magnesium (Mg), and zinc (Zn) batteries.

6.
ChemSusChem ; 12(18): 4176-4184, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31330082

RESUMO

Lithium-sulfur (Li/S) batteries suffer from "shuttle" reactions in which soluble polysulfide species continuously migrate to and from the Li metal anode. As a consequence, the loss of active material and reactions at the surface of Li limit the practical applications of Li/S batteries. LiNO3 has been proposed as an electrolyte additive to reduce the shuttle reactions by aiding the formation of a stable solid electrolyte interphase (SEI) at the Li metal, limiting polysulfide shuttling. However, LiNO3 is continuously consumed during cycling, especially at low current rates. Therefore, the Li/S battery cycle life is limited by the LiNO3 concentration in the electrolyte. In this work, an ionic liquid (IL) [N-methyl-(n-butyl)pyrrolidinium bis(trifluoromethylsulfonyl)imide] was used as an additive to enable longer cycle life of Li/S batteries. By tuning the IL concentration, an enhanced stability of the SEI and lower flammability of the solutions were demonstrated, that is, higher safety of the battery. The Li/S cell built with a high sulfur mass loading (4 mg cm-2 ) and containing the IL-based electrolyte demonstrated a stable capacity of 600 mAh g-1 for more than double the number of cycles of a cell containing LiNO3 additive.

7.
ChemSusChem ; 10(17): 3490-3496, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28731629

RESUMO

Increased pollution and the resulting increase in global warming are drawing attention to boosting the use of renewable energy sources such as solar or wind. However, the production of energy from most renewable sources is intermittent and thus relies on the availability of electrical energy-storage systems with high capacity and at competitive cost. Lithium-sulfur batteries are among the most promising technologies in this respect due to a very high theoretical energy density (1675 mAh g-1 ) and that the active material, sulfur, is abundant and inexpensive. However, a so far limited practical energy density, life time, and the scaleup of materials and production processes prevent their introduction into commercial applications. In this work, we report on a simple strategy to address these issues by using a new gel polymer electrolyte (GPE) that enables stable performance close to the theoretical capacity of a low cost sulfur-carbon composite with high loading of active material, that is, 70 % sulfur. We show that the GPE prevents sulfur dissolution and reduces migration of polysulfide species to the anode. This functional mechanism of the GPE membranes is revealed by investigating both its morphology and the Li-anode/GPE interface at various states of discharge/charge using Raman spectroscopy.


Assuntos
Fontes de Energia Elétrica , Eletrólitos/química , Polímeros/química , Enxofre/química , Condutividade Elétrica , Eletrodos , Géis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...